

D2.5. EDUBOX DIY toolkit
architecture

This Project has received funding from the European Union’s Creative Europe Media programme under grant
agreement: CREA-CROSS-2021-INNOVLAB-Project 101059958

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or [name of the granting authority]. Neither the European
Union nor the granting authority can be held responsible for them.

Ref. Ares(2023)4540465 - 30/06/2023

2

D2.5. EDUBOX DIY toolkit
architecture

1. General introduction

2. Short description EDUbox tools
a. Co-op game

b. Puzzle game

c. Lecture-app

d. Interactive video

e. Picture It

3. Overview technical architecture

4. Specific technical architecture per tool
a. Co-op game

b. Puzzle game

c. Lecture-app

d. Interactive video

e. Picture It

5. Distribution

3

1. General introduction

EDUbox is a learning experience that combines storytelling, pedagogy, and technology. In every EDUbox we
integrate interaction to stimulate learning-by-doing. During the last 5 years we have already developed several
digital tools & apps. In this project it is our ambition to make some of these digital tools re-usable. These tools
are also part of the EDUbox DIY toolkit.

To easily allow the consortium partners and newly attracted partners to create their own EDUboxes, a DIY
toolkit will be developed. The DIY toolkit will consist of all templates, software packages and manuals needed
to easily allow others to kickstart the creation of their own EDUbox.

In this deliverable we will only focus on the digital tools and how we will make them re-usable.

During the project we foresee the following activities:

Activity 1: developing a structure and common software architecture for the EDUbox DIY toolkit.

Activity 2: Next, the plan is to package and open source all software components of the EDUbox. Those
software packages will be published on an appropriate open-source software distribution platform.

In this deliverable we thus focus on activity 1 where we give an overview of the common software architecture
for the different digital tools. This will serve as the basis for the development of the tools and the back end.

First, we list all the tools we want to work on. We give a short description of the purpose of the tools.

Next, we provide more information about the common technical architecture. We highlight the commonalities
in the setup.

In the following chapter, we go more in depth into the different tools and give information about the setup,
game-flow, data-model, and the content management architecture.

Lastly, we explain how we want to distribute the code packages to other organisations.

4

2. Short description EDUbox tools
a. Co-op game
The co-op game has its origin in and educational context where collaborative problem solving (CPS)
is researched and analysed. In this game, these CPS principles are applied and gamified. The
creators can create different thematical contexts (eg a spacecraft going to Mars) where the players
need to co-operate and colaborate to accomplish missions on their way to the end goal. This end
goal is quantified by introducing a resource that needs to be managed and kept as high as possible
(eg oxygen in the spacecraft).

b. Puzzle game
In the puzzle game the user is given 2 areas in front of him, in the first and largest area there are
several cards arranged in a grid. In the second area there are no items in the initial phase, but by
playing the game, the user will unlock items here. The progression of the tool consists of clicking on
2 or more items that are related to each other. When the user has indicated items that are a match,
these tickets will disappear from the first area and a ticket will appear in the second area. After this
the game can be continued. By clicking on the item in the second area, users can learn more about
the match they have found. The game is done when all items from the first area disappear and all
items in the second area are visible.

c. Lecture-app
The Lecture game has a similar technical architecture as the co-op game. There is one central screen
(eg a PC) and multiple players who log in with their smartphone. The idea is that a theme is given, and
players take turns in talking and listening to each other in order to comprehend the given message.

d. Interactive video
The interactive video contains a layer that looks at the time code of a video, when the video reaches
a predetermined time code, a screen will be displayed in front of the video where the user will see
one or more buttons. Clicking on these buttons will give the video a new start time. This allows you to
guide the user through a story or let the user create their own story.

e. PictureIt
Picture it allows users (students) to give input by means of one or more photos. To each
photo, they can add some textual context. The input per group comes together on a virtual
photo board that the teacher can present. The overview of photos can then initiate class
conversation, and be explored further by using filters (e.g. filter by color, sociodemographic
...).

5

3. Overview technical architecture

Like shown in the diagram there will be one content management system (Strapi) which contains
content for all tools and will have the possibility to create new content. This CMS needs a database
and a file storage service connected during setup-phase. The Co-op game and Lecture game will
share a frontend (built in Gatsby) and will each communicate with a dedicated game engine in a
shared backend (built in Nodejs), which will get the content of that specific game in the CMS. The
three other tools (Puzzle game, Interactive video, and Picture it) will each have a separate frontend,
which will get the content directly from Strapi. Those frontends contain all functionality of that tool
so do not require a backend.

For any of the tools, existing content can be managed, and new content can be created via the Strapi
CMS. For example, a new ‘co-op game’ named ‘Road to Jupiter’ can be created in the web client of
Strapi by a content creator. Every piece of content can be added by clicking, typing, saving, … in the
web interface, there is no need for a developer to do anything. This new content will then
automatically be available to the fronted by adding the correct parameter to the url, for this example
it could be:
http://www.url-of-the-organization.com/edumake/co-op-game?id=road-to-jupiter. We call this the
“publishing” process.

6

7

4. Specific technical architecture per tool
a. Co-op game

1. Hardware setup

1 host screen
 = laptop, pc, …  
= eg “the spacecraft”

4 individual screens
 = smartphone, (tablet) 
= the crew members 
= eg “pilot, engineer, scientist, coordinator”

All screens communicate via websockets with the backend. Updates are sent and received across all
screens in real time, so all devices go through the different game phases simultaneously. The
backend is built in Nodejs and guides all communications of a certain group to a game room in the
game engine. The game engine controls all game mechanics and communicates with a game state
per group (which is a state machine), more on this in the next paragraph.

8

2. Game flow

The game flow can be described by looking at four types of game state, of which the current status
is controlled by the game engine. Each client device (the host and the guest screens) simultaneously
go through these different phases in the game.

There is a global progress, which begins in a login phase where alle clients enter the game and are
grouped in a game room, to keep the progress isolated for this specific group. When everyone is
logged in, the game enters an intro phase where the game is explained by cycling through different
informational slides. After this, the global rounds phase begins, which consists of one or more
rounds, this number is freely chosen by the content creators, while using the CMS. When all rounds
are completed, there is an outro phase which shows the team results and makes a conclusion on the
team efforts.

Each round also has different phases. We start with an intro phase where there can be a thematical
introduction, a quest that is explained, a mission that is given, … After this, the turns can begin.
Typically, each player has a turn in a round (each player in consecutive order), but there can also be
group turns, where all players, answer symultaneously (in concurrence). When the turn phase is
completed, there is redistribute phase, where all players can redistribute the resource that they have
left after the turns. The idea is that will trigger a tactical discussion in the team. Finally, there is an
outro phase where a themetically conclusion can be made.

In a consecutive turn, one player has the lead, and after reading the intro phase, receives the
question and the different answer options. When selecting an option, there is a preview on all
screens of the impact on the resources that this option has. The lead player can close the option and
return to the question phase if he wants or confirm the option and initiate the next turn for the next
player.

In a concurrent turn, again after a short intro, there is a question displayed on all player screens.
When all players answered, the turn state will transition to a ready state, which finalizes the turn.

9

3. Game state diagram

Above diagram of the game flow is, in essence, a simplified version of the more detailed game state
‘state diagram’, which also contains decision making and a definition of which actions lead to which
state transitions and by whom they are triggered.

pink (in frames) = backend state
purple (on arrows) = host action (on websocket)
blue (on arrows) = guest action (on websocket)
grey = game state / game engine methods
green (on arrows) = game state conditions

10

11

4. Content management: strapi

Once setup is completed, our CMS (Strapi) is a user-friendly web-app, where authorized users can
create, publish and edit content

The main content types are:

• Games
• Rounds
• Turns (old name = cards)
• Roles

Each content type has

• A list overview
• A detail per item

12

Adjustable:

• All titles, text, images, … that are visible in the co-op game.
• theme: general game props,
• turns: questions, options, impact, hints
• rounds: how many, which turns, intro, outro
• roles: how many, names, avatars, color…

Not adjustable:

• Mechanics from flow chart

13

5. Content types and data architecture.

In strapi, the main building blocks that are used while creating content are named “content types”.
By using these content types in a structured way, we can create the data architecture as displayed
below.

14

15

b. Puzzle game

1. Hardware setup

1 host screen
 = laptop, pc, …

All game content is loaded upon opening the page. no additional communication is required.

2. Game flow

When the game page loads, the first thing that the user sees is a little description, what they will be
expected to have to do. To start the next phase with the game, they can click on the button called
“start now”.

The game phase contains a grid of cards that a user can click on. To accomplish the game a user
needs to find the cards that are related to each other. When they do, they will disappear from the
grid. And a groups card that represent the cards will appear in the groups area on the screen.

The card combinations can require 2 or more cards but will be always the same number of cards for
every card group in a game.

When there are no cards left to click on, the game is completed, and the game goes to the third and
last phase. Here will be a message displayed, with a call-to-action, to continue to the EDUbox.

16

3. Game state diagram

pink (in frames) = backend state
blue (on arrows) = guest action
grey = game state / game engine methods
green (on arrows) = game state conditions

17

4. Content management : strapi

Once setup is completed, our CMS (Strapi) is a user-friendly web-app, where authorized users can
create, publish and edit content

The main content types are:

• Puzzlegame

Each content type has

• Puzzle_card_result
• Puzzle_card_game

18

5. Content types and data architecture

19

c. Lecture-app

The Lecture-app has a similar technical implementation as the co-op game.

The hardware-setup is quasi-identical, also here there is 1 host screen (laptop, pc, …) and 4 individual
screens (smartphone, tablet). All screens communicate via websockets with the backend. Updates
are sent and received across all screens in real time, so all devices go through the different game
phases simultaneously. The backend is built in Nodejs and guides all communications of a certain
group to a game room in the game engine. Even though, much simpler as in the co-op game, the
game engine controls all mechanics and communicates with a game state per group.

There also is a login-phase where groups are created, players can log in and the game can start:

In the center of the game mechanics, there is a story image on the main screen, a story on one of
the individual screens and call to listen on the other individual screens.

20

Also like the co-op game, the game-data can be managed, created, edited, published in Strapi. Data
that can be controled includes:

• EDUbox theme id
• Card image
• Card title
• Card tekst

21

22

To be complete, we will also add the data architecture of the Lecture game, even though it is very
basic, compared to the other games.

23

d. Interactive video
1. Hardware setup

1 host screen
 = laptop, pc, …

All game content is loaded upon opening the page. Video is loaded from Youtube via javascript

2. Game flow

When the game page loads, the first thing that the user sees is a little description, what they will be
expected to have to do. To start the next phase with the game, they can click on the button called
“start now”.

The video starts playing and the code on the background will watch the time progress of the video,
that is playing. When the video time is between a predefined start and end time, a function is called
that either pauses the video or puts it in loop between the start and end time that was defined. At the
same time, an instruction screen is displayed, which may contain an explanation and one or more
buttons. By pressing the button, the video gets a new start time, from which the video will continue
to play, and one leaves the instruction screen until the video time is again between a predefined start

24

and end time.

When the video time is at the end of the video, the latest pancarte is made visible, here will be a
message displayed, with a call-to-action, to continue to the EDUbox.

3. Game state diagram

pink (in frames) = backend state
blue (on arrows) = guest action
green (on arrows) = game state conditions

25

26

4. Content management : strapi

Once setup is completed, our CMS (Strapi) is a user-friendly web-app, where authorized users can
create, publish and edit content

The main content types are:

• Interactive_video

Each content type has

• Interactive_video_screen

5. Content types and data architecture

27

a. PictureIt

Picture it is a monolithic app built in Ruby on Rails. This app serves all different user types
(the students participating, the teacher, and the admins). The app stores its data in a
postgreSQL database, and the assets (pictures) uploaded in an AWS S3 bucket.

Each setup is a complete standalone application and does not share any data with another
setup.

Student flow
A student can participate by sending in one or multiple pictures that answer to a specific
challenge. This follow has been designed in a mobile-first way, so that students can take a
picture on a device while using the website.

This consists of the following steps:

● Join a group by entering the code (which the teacher has given them outside of the
app)

● Answer some general questions (can be configured by the admins)
● Upload a picture (or select one from a pre-defined library, if enabled) and answer a

question related to that picture

The general questions only need to be answered once if the student wants to upload
multiple pictures.

28

While the user is using the app we store an anonymous user id on their device, so that we
can keep track of the answers and the pictures they uploaded.

Teacher flow
A teacher can create one or more groups and show the pictures for a group.
In order to create groups, a teacher needs to create a login with their email and password.

While creating a group, some additional questions can be asked about the group (this is
configurable by the admins).

Once a group is created, a teacher can give the group’s code to their students. The teacher
has a presentation screen to show the pictures that have been submitted. In this screen
they can:

● Filter the pictures
● Mark pictures as rejected if they are not appropriate.
● Compare the pictures of their group to those of other groups.

While this flow works on both mobile and desktop, it is recommended to use a bigger
screen to display the pictures.

Admin backend
The admin has an additional interface where they can manage the projects, settings and
moderate pictures that have been sent in.

Database schema
Note: the below is a simplified version, that gives an overview of the main models and
structure of the application.

29

30

6. Distribution

The created applications will be completely shared with the project partners. This sharing consists of
two phases.

Firstly, the complete source code will be shared, normally through direct access to a Git repository.
This has yet to be approved and setup by the correct internal VRT services. If there should be an
issue with this, the source code files can be shared directly. Upside of the first option is that it is
easier to stay in sync with possible updates but the second option is also viable.

Secondly, in the source code, there will be configuration files for Docker deployment. Every individual
peace of of the application (frontends, backend, cms) will have a docker configuration file and will be
able to function in a docker container. We will then also provide a docker-compose configuration
that allows for building all the different parts and starting up the entire application with one single
command. This configuration should be enough for a technical department to host this application
on any type of server: a local, self-managed server or by using one of the cloud based providers like
AWS, Azure, Google,...

