

D2.8. EDUBOX DIY software toolkit

This Project has received funding from the European Union’s Creative Europe Media programme under grant
agreement: CREA-CROSS-2021-INNOVLAB-Project 101059958

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or [name of the granting authority]. Neither the European
Union nor the granting authority can be held responsible for them.

Ref. Ares(2023)6611937 - 29/09/2023

2

Work package WP 2

Task T2.6 - D2.8

Due date 30/09/2023

Deliverable lead VRT

Version 0.1

Authors Pieter Van Eynde , Quinten Mares, Tim Van Lier (VRT); Erwin Bergmans
(Tree)

Keywords DIY toolkit, software, code

Document Revision History

Version Date Description of change List of contributor(s)

V0.1 01/09/2023 1st outline of the document Tim Van Lier (VRT)

V0.2 22/09/2023 How to-Content added Pieter Van Eynde, Quinten Mares
(VRT)

V0.3 25/09/2003 Picture It added Erwin Bergmans (Tree)

V0.4 29/09/2023 Final modifications for submission Tim Van Lier (VRT)

3

D2.8. EDUBOX DIY software toolkit

1. General introduction

2. Brief description EDUbox tools

3. EDUbox tools: how to – setup
a. Intro

b. Strapi

c. Backend

d. Frontend

e. Online examples

4. EDUbox tools: how to – content creation
a. Co-op game

b. Puzzle game

c. Lecture-app

d. Interactive video

e. Picture It

4

1. General introduction

EDUbox is a learning experience that combines storytelling, pedagogy, and technology. In every EDUbox we
integrate interaction to stimulate learning-by-doing. During the last 5 years we have already developed several
digital tools & apps. In this project it is our ambition to make some of these digital tools re-usable. These tools
are also part of the EDUbox DIY toolkit.

To easily allow the consortium partners and newly attracted partners to create their own EDUboxes, a DIY
toolkit will be developed. The DIY toolkit will consist of all templates, software packages and manuals needed
to easily allow others to kickstart the creation of their own EDUbox.

In this deliverable we will only focus on the digital tools and how we will make them re-usable.

During the project we foresee the following activities:

Activity 1: developing a structure and common software architecture for the EDUbox DIY toolkit.

Activity 2: Next, the plan is to package and open source all software components of the EDUbox. Those
software packages will be published on an appropriate open-source software distribution platform.

In this deliverable we thus focus on activity 2 where we give an overview of the different software packages for
the different digital tools.

First, we give a brief description of the purpose of the tools.

Next, we provide more information about the main setup and the URLs to the different tools.

In the last chapter, we go more in depth into the different tools and describe how the tools work.

5

2. Brief description EDUbox tools
a. Co-op game
The co-op game has its origin in an educational context where collaborative problem solving (CPS) is
researched and analysed. In this game, these CPS principles are applied and gamified. The creators
can create different thematical contexts (eg a spacecraft going to Mars) where the players need to
co-operate and colaborate to accomplish missions on their way to the end goal. This end goal is
quantified by introducing a resource that needs to be managed and kept as high as possible (eg
oxygen in the spacecraft).

b. Puzzle game
In the puzzle game the user is given 2 areas in front of him, in the first and largest area there are
several cards arranged in a grid. In the second area there are no items in the initial phase, but by
playing the game, the user will unlock items here. The tool's progression consists of clicking on 2 or
more items related to each other. When the user has indicated items that are a match, these tickets
will disappear from the first area and a ticket will appear in the second area. After this the game can
be continued. By clicking on the item in the second area, users can learn more about the match they
have found. The game is done when all items from the first area disappear and all items in the second
area are visible.

c. Lecture-app
The Lecture game has a similar technical architecture as the co-op game. There is one central screen
(eg a PC) and multiple players who log in with their smartphone. The idea is that a theme is given, and
players take turns talking and listening to each other to comprehend the message.

d. Interactive video
The interactive video contains a layer that looks at the time code of a video. When the video reaches
a predetermined time code, a screen will be displayed in front of the video where the user will see
one or more buttons. Clicking on these buttons will give the video a new start time. This allows you to
guide the user through a story or let the user create their own story.

e. PictureIt
Picture it allows users (students) to give input by means of one or more photos. To each
photo, they can add some textual context. The input per group comes together on a virtual
photo board that the teacher can present. The overview of photos can then initiate class
conversation, and be explored further by using filters (e.g., filter by color, sociodemographic
...).

6

3. EDUbox Tools: how to – setup

a. Intro

Technical trinity: 3 entities combined create a full stack application where the different tools are
accessible.

7

Brief description

- Frontend:

- the UI where everything comes together and where the end user interacts with

- Repo: https://bitbucket.org/vrt-prod/vi-edubox-games-fe/src/master/

- Online example: https://tools.vrtinnovatie.be/EDUbox/games/co-op-game/?game-
id=road-to-mars-nl

- More info in paragraph “3.d. Frontend”

- Backend:

- the server where game-rooms are created and game-engine and game-state control game
logic for the co-op-game and lecture-game

- Repo: https://bitbucket.org/vrt-prod/vi-edubox-games-api/src/master/

- Online example: https://d28jjqpn894ni1.cloudfront.net/

- More info in paragraph “3.c Backend”

- Strapi:

- the content management system, where content creators can log in and create new games
and tools.

- Repo: https://bitbucket.org/vrt-prod/edubox-games-strapi/src/master/

- Online example: https://dudwpkgwkyw9w.cloudfront.net/admin/

- Installation and setup start here, so this is the next paragraph: “3.b Strapi”

Setup & installation

Each of the three parts needs to be installed for the application to function. They can be installed in
diverse ways:

- separately, either through
o manual build and deployment,
o a ci/cd-pipeline
o a docker container

- together, in a single command via docker-compose

Detailed instructions can be found in the readme files of each repo. Config files for cd/cd
deployment and docker installation files are included in every repo’s root folder.

Entry point for installation instructions is the readme of the Strapi repo (paragraph “3.b Strapi”)

8

b. Strapi

Edubox-games-strapi

Used as a part of 3 repositories to create a full stack application.

- Frontend: [Bitbucket](https://bitbucket.org/vrt-prod/vi-edubox-games-fe/src/master/)

- Backend: [Bitbucket](https://bitbucket.org/vrt-prod/vi-edubox-games-api/src/master/)

- Strapi: [Bitbucket](https://bitbucket.org/vrt-prod/edubox-games-strapi/src/master/)

- Branches:

- master: production

- dev: development

- Miro: https://miro.com/app/board/o9J_l7CHgkk=/

Strapi-Development

- when content types need to be edited

- admin panel: http://localhost:1337/admin

1. non dockerized development

- set .env file like .env.example

- `yarn`

- `yarn dev`

- uses sqlite database

- or via local mysql `docker run --name edumake-strapi -e MYSQL_ROOT_PASSWORD=xxx -d -p
3306:3306 mysql:8.0`

2. in docker

- only strapi (not frontend or backend)

- start: `docker-compose -f docker-compose.strapi.dev.yml up -d`

- uses local dockerized mysql database by default

- database-config in .env with fallback in folder `./config/env/development`

- script created by: [strapi-tool-dockerize](https://github.com/strapi-community/strapi-tool-
dockerize#readme)

- stop + remove docker containers + data (!): `docker-compose -f docker-compose.strapi.dev.yml
down`

9

Strapi-Production

- only strapi (not frontend or backend)

- when content types are stable, suitable for online, public use

- non dockerized (local) build and serve:

- `yarn build`

- `yarn start`

Deployment full project in docker

- full stack: strapi + frontend (fe) + backend (api)

- also includes edumake frontend and backend

- environment variables:

- set in folders for fe, api, strapi

- fe: set .env.production file like .env.example

- api: set .env file like .env.example

- strapi: database-config in .env with fallback in folder `./config/env/production`

- uses local dockerized mysql database by default

- start: `docker-compose -f docker-compose.edumake.prod.yml up -d`

- stop + remove docker containers + data (!): `docker-compose -f docker-
compose.edumake.prod.yml down`

Strapi configuration after deployment

- create admin user (+ optionally other users)

- settings > users & permissions plugin > roles > public > permissions > find and check permissions
'find' and 'findone' for all co-op content types

- import road-to-mars-nl-content.json as an example via the import/export plugin

- create new co-op content

CI/CD Deployment to AWS-EB

- (one time) configure AWS: Elastic Beanstalk environment (with env vars), RDS (database), S3 (file
storage), S3 (builds folder), AWS credentials in Bitbucket

- merge dev in master branch, push to master-origin

10

c. Backend

Edumake-be

Used as a part of 3 repositories to create a full stack application.

- Frontend: [Bitbucket](https://bitbucket.org/vrt-prod/vi-edubox-games-fe/src/master/)

- Backend: [Bitbucket](https://bitbucket.org/vrt-prod/vi-edubox-games-api/src/master/)

- Strapi: [Bitbucket](https://bitbucket.org/vrt-prod/edubox-games-strapi/src/master/)

- Nodejs backend for Edumake

- Continuation of edubox-games-api and steamsroom

- Uses: typescript, express, socket.io, ...

- 2 branches: master/dev

- Miro: https://miro.com/app/board/o9J_l7CHgkk=/

Use

- set .env file like .env.example

- dev:

- `npm install`

- `npm run dev`

- local build and serve:

- `npm run build`

- `node dist/src/index.js`

- single docker:

- `docker build -t edubox-games-api .`

- `docker run -p 5000:5000 edubox-games-api`

- deployment full project in docker:

- see readme in edubox-games-strapi

Environment variables:

- `PORT` is the port for the express server to listen to (e.g., 5000)

- `HOST` is the full public path to the server (e.g., http://onderwijs.vrt.be/edubox-games-api/)

- `DATASOURCE` is the full public path to Edumake CMS (edumake-strapi)

11

d. Frontend

Edubox-games-fe

Used as a part of 3 repositories to create a full stack application.

- Frontend: [Bitbucket](https://bitbucket.org/vrt-prod/vi-edubox-games-fe/src/master/)

- Backend: [Bitbucket](https://bitbucket.org/vrt-prod/vi-edubox-games-api/src/master/)

- Strapi: [Bitbucket](https://bitbucket.org/vrt-prod/edubox-games-strapi/src/master/)

- Branches:

- master: production

- dev: development

- Miro: https://miro.com/app/board/o9J_l7CHgkk=/

Use

- development:

- set .env file like .env.example

- `yarn install`

- `yarn dev`

- local build and serve:

- set .env.production file like .env.example

- `yarn build`

- `npm serve -s build -l 3000`

- run as single docker:

- set .env.production file like .env.example

- `docker build -t edubox-games-fe .`

- `docker run -p 80:80 edubox-games-fe`

- deployment full project in docker:

- see readme in edubox-games-strapi

12

e. Online examples

Strapi:

- Web interface:
o https://dudwpkgwkyw9w.cloudfront.net/admin/
o Reviewer login details:

§ Username: edumake-reviewer@vrt.be
§ Password: RUE.nyk2

- Public API endpoints:
o https://dudwpkgwkyw9w.cloudfront.net/api/co-op-games/road-to-mars-nl
o https://dudwpkgwkyw9w.cloudfront.net/api/co-op-games/Road-to-consensus
o https://dudwpkgwkyw9w.cloudfront.net/api/puzzlegames/duurzaamheid
o https://dudwpkgwkyw9w.cloudfront.net/api/interactive-videos/testontwikkeling
o https://dudwpkgwkyw9w.cloudfront.net/api/puzzlegames/duurzaamheid
o ...

Backend:

- https://d28jjqpn894ni1.cloudfront.net/

Frontend:

- Co-op
- https://tools.vrtinnovatie.be/EDUbox/games/co-op-game/?game-id=road-to-mars-nl
- Interactive video
- https://tools.vrtinnovatie.be/EDUbox/games/interactive-video/?game-id=testontwikkeling
- Puzzle game
- https://tools.vrtinnovatie.be/EDUbox/games/puzzlegame/?game-id=duurzaamheid
- https://tools.vrtinnovatie.be/EDUbox/games/puzzlegame/?game-id=cybersecurity-nl
- Lecture game
- https://tools.vrtinnovatie.be/EDUbox/games/lecture-game/?game-id=pandemie
- https://tools.vrtinnovatie.be/EDUbox/games/lecture-game/?game-id=cultuur
- https://tools.vrtinnovatie.be/EDUbox/games/lecture-game/?game-id=cultuur-hr
- https://tools.vrtinnovatie.be/EDUbox/games/lecture-game/?game-id=cybersecurity
- https://tools.vrtinnovatie.be/EDUbox/games/lecture-game/?game-id=cybersecurity-fr
- https://tools.vrtinnovatie.be/EDUbox/games/lecture-game/?game-id=gezondheidszorg
- https://tools.vrtinnovatie.be/EDUbox/games/lecture-game/?game-id=identiteit

13

4. EDUbox Tools: how to – content creation
a. Co-op game

Login in Strapi

On initial installation, an admin strapi user is created, which in turn can create new users, if desired
with specific roles and rights.

These users can then login to the Strapi web interface at https://strapi_base_url/admin/ like for
example: https://dudwpkgwkyw9w.cloudfront.net/admin/

You	will	then	be	prompted	for	login	details:	

Note: new users can be created by an admin user via settings > administration panel > roles (create rights) >
users (create user) > get/send invitation link

14

Navigate to a (new) co-op game:

After login you can

1. Open the sidebar
2. Go to the content manager and select “Co-op game”

You can then either

3. create a new game
4. import an existing game from a json file
5. Open an existing game

15

Co-op	game	content	

Once	inside	a	(new)	co-op	game	you	get	a	detailed	view	of	all	the	content	of	that	specific	co-op-game.	It	
starts	with:	

1. game_title:	will	be	displayed	on	different	screens	in	the	game	and	as	page	title	
2. game_id:	is	used	as	unique	identifier	in	the	url	
3. guest_players:	used	on	many	screens	
4. host_player:	used	on	many	screens	
5. game_login:	the	login	screen	

	

Other mayor building blocks (components) in the game are:
- game_intro
- rounds
- game_outro
- game_resource
- game_defaults
- game_colors
- round_redistribute

16

Components and repeatable components

A component can be expanded to reveal detail fields as a part of that component

For example, a guest_player consists of following fields:

1. co_op_role_id
2. title
3. avatar
4. description
5. Color

6. Also, the field “guest_players” is an array of those components, so you can add as many as

you want, it is a “repeatable component”

17

Fields are being displayed, directly in the frontend

Where components and field names are displayed should be self-explanatory based on their names.
The name of the component often refers to a phase in the game, related to a game state. Also, many
times a field name starts with “host” when it is displayed on the main screen and “guest” when it is
used on the player screens.

An example:

The login screen:

1. game_id
2. game_title
3. game_login > host_title
4. game_login > host_description
5. guest_players > title + avatar
6. game_login > host_share_button_label
7. game_login > host_players_logged_in
8. game_login > host_share_button_label
9. game_login > guest_wait_message

And in this manner, all text, numbers, images, colors, … that are displayed in the frontend have a
logically named field in the Strapi content management system. A few more examples and a full list
of fields can be found below.

18

Frontend examples:

19

20

Complete list of components and fields

- game_title: Text

- game_id: Text

- guest_players: Component (repeatable)

 - co_op_role_id: Text

 - title: Text

 - description: Text

 - avatar: Media

 - color: Text

- host_player: Component (repeatable)

 - co_op_role_id: Text

 - title: Text

 - description: Text

 - avatar: Media

 - color: Text

- game_login: Component

- host_title: Text

- host_description: Text

- host_next_button: Text

- guest_wait_message: Text

- host_background_image: Media

- host_max_players_reached: Text

- host_players_logged_in: Text

- host_share_button_label: Text

- host_share_button_description: Text

- game_intro: Component

- host_intro_slides: Component (repeatable)

 - title: Text

 - description: Rich text

 - media: Media

 - youtube_link: Text

 - host_start_game_button: Text

 - host_skip_intro_button: Text

- guest_welcome_message: Text

21

- host_background_image: Media

- rounds: Component (repeatable)

 - round_name: Text

 - host_background_image: Media

 - round_intro: Component

 - host_slides: Component (repeatable)

 - title: Text

 - description: Rich text

 - media: Media

 - youtube_link: Text

 - host_last_slide_button: Text

 - turns: Component (repeatable)

 - turn_title: Text

 - turn_type: Enumeration

 - turn_role_if_normal: Text

 - turn_question: Component

 - guest_question: Text

 - guest_question_image: Media

 - turn_options: Component (repeatable)

 - guest_title: Text

 - guest_description: Text

 - impact: Component (repeatable)

 - co_op_role_id: Text

 - impact: Number

 - turn_hints: Component (repeatable)

 - co_op_role_id: Text

 - guest_description: Text

 - turn_host_screen: Component

 - host_title: Text

 - host_description: Text

 - host_question_image: Media

 - host_background_image: Media

 - turn_show_impact_preview: Boolean

22

 - round_outro: Component

 - host_slides: Component (repeatable)

 - title: Text

 - description: Rich text

 - media: Media

 - youtube_link: Text

 - host_last_slide_button: Text

 - show_round_redistribute: Boolean

- game_outro: Component

 - host_outro_slides: Component (repeatable)

 - title: Text

 - description: Rich text

 - media: Media

 - youtube_link: Text

 - host_end_game_button: Text

 - host_results_button: Text

 - guest_outro_message: Text

 - host_background_image: Media

- game_resource: Component

 - name: Text

 - unit: Text

 - min: Number

 - max: Number

 - my_resource_label: Text

- game_defaults: Component

 - guest_read_along: Text

 - guest_default_question_image: Media

 - host_default_background_image: Media

 - host_next_button: Text

 - host_previous_button: Text

 - turn_player_draws_card: Text

 - turn_player_reads_card: Text

 - turn_player_confirms_option: Text

 - turn_player_draw_card: Text

23

- round_redistribute: Component

 - host_title: Text

 - description: Rich text

 - host_slides: Component (repeatable)

 - title: Text

 - description: Rich text

 - media: Media

 - youtube_link: Text

 - host_last_slide_button: Text

 - host_reset_button: Text

 - host_confirm_button: Text

 - guest_button_title: Text

 - guest_button_explanation: Rich text

- game_colors: Component

 - host_background: Text

 - host_text_primary: Text

 - host_text_accent: Text

 - host_button_background: Text

 - guest_background: Text

 - guest_text_primary: Text

 - guest_text_accent: Text

 - host_button_text: Text

 - host_centerpiece_background: Text

 - host_button_border: Text

 - host_centerpiece_border: Text

 - host_players_background: Text

 - host_players_border: Text

 - host_player_background: Text

 - host_player_border: Text

24

b. Puzzle game

Puzzle game login, navigation content, game_id, components & fields principal function the same as
the co-op game.

25

26

Complete list of components and fields

name: Text

startbutton_text: Text

endscreen_text: Rich text

startscreen_text: Rich text

msg_succes: Text

msg_error: Text

theme_color: Text

game_columns: Number

game_rows: Number

results_visible: Number

game_random: Boolean

results_random: Boolean

puzzlegame_card: Component (repeatable)

card_title: Text

card_content_alttext: Text

card_content: Media

card_id: Number

resultcard_id: Number

puzzlegame_resultcard: Component (repeatable)

resultcard_title: Text

resultcard_content: Media

resultcard_content_alttext: Text

resultcard_id: Number

resultcard_text: Rich text

msg_fault: Text

msg_fault_dubble: Text

gamescreen_close_text: Text

unknown_error: Text

game_id: Text

27

c. Lecture-game
Lecture game login, navigation content, game_id, components & fields principal function the same
as the co-op game and the puzzle game.

28

29

Complete list of components and fields

game_label: Text

game_id: Text

game_cards: Component (repeatable)

title: Text

image: Media

html: Text

main_color: Text

30

d. Interactive video

Lecture game login, navigation content, game_id, components & fields principal functions the same
as the co-op game, the puzzle game, and the lecture game.

31

32

Complete list of components and fields

name: Text

startbutton_text: Text

startscreen_text: Rich text

endscreen_text: Rich text

theme_color: Text

interactive_video_screen: Component (repeatable)

screen_start_display_time: Number

screen_end_display_time: Number

screen_title: Text

screen_text: Rich text

Interactive_video_screen_buttons: Component (repeatable)

Interactive_video_screen_button_title: Text

Interactive_video_screen_button_starttime: Number

video_action: Enumeration

youtube_video_id: Text

startscreen_title: Text

video_type: Enumeration

video_file: Media

startbutton_extra_explanation: Text

game_id: Text

33

e. Picture It
ADMIN - BACKEND

The admin has two types of users: admins and superadmins.

• Admins only have access to selected projects.
• Superadmins have access to all projects and settings. Only superadmins can create other

admins or superadmins and change their roles.

To avoid confusion, all admins can see all projects in the overview, but are not able to see the details
for projects they do not have access to.

If you want to use Picture it, you can choose an existing project or create your own project from
scratch.

Go to https://admin.pictureit.forestry.be/admins/sign_in

After logging into the admin backend, you get an overview of all projects for Picture it.

Click on ‘Add new’ to add a new project and fill in all the information.

Name: Internal name (not visible for students)

Title: Title of the project

34

Description: Add a welcome text for the students. This will appear on the first screen.

Subdomain: Add a unique subdomain. The url for the student will be
https://YOURSUBDOMAIN.pictureit.forestry.be/

Active: Choose if the project is already visible or not. Only an active project can be used by students

Click ‘Save’ in the top right corner to make your project.

You can now add questions, challenges, and tips for your project. To do this, first select the project.

In the left menu, you can select different options to change for your selected project.

For the project to work in the frontend, you need to add at least one challenge.

QUESTIONS

Some extra info you want to get from students

Name: internal name

Description: Ask the question you want to ask the students

Question type: Choose the right type for the data you want to gather

Placeholder: Add temporarily text

Required: should students be required to fill in this question? (select yes if you are going to use this
as filter)

Filterable: Use this question as a filter when presenting all photos?

Filter type: How does this question appear on the photoboard? Select multiple or select single?

CHALLENGES

Add one or more challenges, where students can upload their images

35

Name: Name of the topic (visible for students)

Description: Add the main question you want to ask the students.

A new menu item has opened. You can create

- Extra questions
- Add inspiration images (to create a photolibrary where students can select images instead of

making images themselves)
- See an overview of all groups that were created, or you can make a new group

TIPS

If you want to, you can give some tips to your students (on how to use pictures, more info about the
challenges...)

Title: Add a title to your tip

Body: Add your tip

Image: Add an image to support your tip

Image alt text: Add an alt text to your image, for screen-readers to describe the image

36

PICTURES

Picture it works with post-moderation. This means that a picture that has been sent in by students
appears on the photoboard. If needed, you can reject pictures that you do not want to be published.

In the admin backend, you can see all the pictures for a project, or per challenge. You can see the
current moderated status (published – this is the standard) and change the status to ‘rejected’ if
necessary. Rejected pictures will not show up on the supervisor interface.

SUPERVISOR INTERFACE

If your preparation is done, or you will start an existing project, you can log into the supervisor
interface by creating a supervisor account. Non-admins can also log into this interface and create
supervisor accounts. https://YOURDOMAIN.pictureit.forestry.be/supervisor/sign_up

Group code: create a unique group code. This is what students will have to fill in to get started.

Challenge: Choose a challenge you added in the admin for students to complete

Email: Your email adress

Password: Create password

Password confirmation: Confirm password

Click on ‘Create group’ when you fill in all the info.

Coming back later? Go to https://YOURDOMAIN.pictureit.forestry.be/supervisor/sign_in to see the
photoboard.

When logged in as supervisor, you get to see the photoboard where all pictures of your group are
gathered. Only supervisors can see this screen for their groups. To start a group discussion with your
students, you will have to share this screen.

37

You can drag and drop them anywhere you want on the board.

By clicking on the photos, you can show the input of the student (answer to the challenge)

On top of the board, you can

• Shuffle the images
• Select a filter (based on questions you asked students)
• Select a filter, based on color
• Compare with other groups for the same project (who use the same challenges)
• Report an image if it is not appropriate. Once an image is reported, it will no longer show up

in the supervisor interface. In the admin interface, reported pictures can be put back to
approved if needed.

STUDENT INTERFACE

Students surf to https://YOURDOMAIN.pictureit.forestry.be/

Click on ‘Start’ and fill in the name of the group you created as supervisor.

Students now see all the questions and challenges you prepared for them. All their input (pictures)
will appear on the supervisors photoboard.

