Enhancing Learning through AI: A Cognitive Framework Framework

- Khanyisile Twabu
- PhD in Education(Curriculum Studies), University of South Africa
- Presentation for Media and Learning Conference, 18-19 June, LEUVEN, Belgium 2025

Introduction

Cognitive Load Theory (CLT)

Foundational framework in understanding understanding learning design that focuses focuses on working memory limitations.

Cognitive Theory of Multimedia Multimedia Learning (CTML)

VERBINO CRAMMAR

AMEDIDIDADA

Mayer's theory explaining how people learn learn more effectively from words and pictures than from words alone.

Al Integration in ODeL

My research explores how AI can be support in Open Distance eLearning.

- integrated into these theories for better
- learner engagement and cognitive support in

The Research Question

"How can we blend timeless educational theories with emerging AI technologies to make learning more meaningful—especially in ODeL

especially in ODeL environments?"

Emerging AI Technologies

Cutting-edge AI systems designed to enhance enhance educational experiences

ODeL Environments

Foundational frameworks like Cognitive Load Load Theory and Cognitive Theory of Multimedia Learning

Open Distance eLearning contexts where AI integration can have significant impact

Why Enhance/Update Traditional Theories?

Al duucationnal Syastem ein Phtentabluon Ooldcout

Frameworks

CLT & CTML are effective frameworks that must adapt/enhance to individual learners.

Dynamic Adaptation

AI enables dynamic adaptation based on realtime learner feedback, creating personalized learning experiences.

Pattern Recognition

Generative AI recognises patterns (like the human brain) – making it ideal for multimedia-based instruction.

Proposed Framework: Three Key Components

1. AI-Enhanced Cognitive Load Management

Intelligent systems that dynamically adjust complexity based on learner capacity, preventing cognitive overload while maximizing engagement.

2. AI-Mediated Schema Creation

AI tools that help learners build robust mental frameworks by identifying patterns and relationships across educational content.

Interactive partnerships between learners and AI systems that complement human creativity with computational efficiency.

3. Human-AI Collaborative Learning

Proposed Framework

Transforming Education with AI and Multimedia Synergy

Developed through: https://www.napkin.ai/

1. AI-Enhanced Cognitive Load Management

How AI technology helps optimize learning by managing cognitive demands:

Real-time Monitoring

AI monitors learner behavior in in real-time to assess cognitive cognitive state and engagement engagement levels.

Dynamic Adaptation

Adjusts content complexity, pacing, and format based on learner performance and needs. needs.

Optimal Cognitive Zone

	Exam
Keeps learners in the 'optimal	probl
'optimal cognitive zone' between	repea
between boredom and	
frustration.	

Practical Application

ple: Math tutor simplifying lems when a student atedly fails a concept.

2. Al-Mediated Schema Creation

How AI technology helps build meaningful learning connections:

Knowledge Assessment Assessment at the learner already knows, creating a personalized knowledge map. map.

Knowledge Building

Structures new content to build build effectively on prior knowledge foundations.

Deep Learning

Practical Application

Promotes deeper retention and	Exa
and effective knowledge transfer	less
transfer to new situations.	taile

areas.

- ample: Adaptive grammar
- sons in language learning
- lored to address specific weak

3. Human-AI Collaborative Learning

Partnership, Not Replacement

Al supports instructors, not replaces them, creating a collaborative educational environment.

Administrative Assistance

Automates grading, curates personalized feedback, and analyses learning data to identify patterns.

Enhanced Human Connection

Frees up educators to provide emotional and metacognitive support that only humans can deliver effectively.

Benefits of AI Integration

Personalised learning experiences

AI tailors education to individual needs and learning styles

Adaptive content pathways

Content that adjusts based on learner performance and preferences

Improved engagement and retention

Higher student involvement leading to better knowledge retention

Real-time feedback and analytics

performance

Immediate insights into learning

learning progress and

Al Integration with CLT and CTML

Al Integration in Education: Benefits and Challenges

Developed through: https://www.napkin.ai/

Challenges/Concerns and Ethical Implications

Cognitive Overload

Risk of mental fatigue and reduced learning effectiveness from overuse of AI systems

Reduced Human Interaction

Potential decrease in critical social learning experiences and human connection

Algorithmic B	bias
---------------	------

Human-Centered Design

Bias and data privacy risks that
that can perpetuate inequalities
inequalities (Binns, 2018)

Need for transparent, ethical AI AI systems that prioritize human human values and agency

Policy and Practice Implications

Update curriculum and **ODeL policies**

Adapting educational frameworks to incorporate AIenhanced learning approaches

Equitable tuition structures

Supporting AI integration through accessible financial frameworks

Ethical AI guidelines

Establishing standards for
responsible data use and
algorithmic fairness

teaching

Educator training

- Fostering skills for effective AI-
- AI-human collaboration in

Conclusion

Transformative Learning Model

Al-infused CLT/CTML framework offers a transformative approach to education

Theory Meets Technology

A

Blends proven theories with adaptive technology

Human-Al Partnership Empowers educators, supports

learners

Future-Fit Education

Builds effective, inclusive, and and future-fit ODeL systems

Thank You!

Questions & Discussion

Contact Us

Future Collaboration